a2 United States Patent

Davidson

US009128548B2

US 9,128,548 B2
*Sep. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54) SELECTIVE REPORTING OF TOUCH DATA

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

Applicant: Perceptive Pixel, Inc., New York, NY
(US)

Inventor: Philip L. Davidson, New York, NY (US)

Assignee: PERCEPTIVE PIXEL, INC.,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 245 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/673,547

Filed: Nov. 9, 2012

Prior Publication Data
US 2014/0104195 Al Apr. 17,2014

Related U.S. Application Data

Continuation-in-part of application No. 13/654,108,
filed on Oct. 17, 2012.

Int. Cl1.

GO6F 13/38 (2006.01)

GO6F 3/041 (2006.01)

GO6F 3/038 (2013.01)

GO6F 3/0488 (2013.01)

GO6F 9/44 (2006.01)

U.S. CL

CPC ... GO6F 3/041 (2013.01); GOGF 3/038

(2013.01); GOGF 3/0416 (2013.01); GO6F
3/04883 (2013.01); GO6F 9/4443 (2013.01);

GO6F 2203/04808 (2013.01)

Field of Classification Search

None

See application file for complete search history.

Hardware

102 104

OS Device |
Input i

Hardware
—

Mouse
122

120

> Mouse

18

0s
Module

Virlual
Bus Driver

-

14
- _ Touch
- /" Digital >
7 Touch
Data

110 i

Digital

Touch Screen | Touch

| Hardware |

Driver and Operating System Services

Real
»' Mouse /
Events,

Emulated

Events /

124

114

(56) References Cited
U.S. PATENT DOCUMENTS
5,119,079 A 6/1992 Hube et al.
7,584,429 B2 9/2009 Fabritius
8,196,055 B2 6/2012 Zotov et al.
8,219,913 B2 7/2012 Terada
2005/0022130 Al 1/2005 Fabritius
2012/0084701 Al 4/2012 Sirpal et al.
2012/0299852 Al 11/2012 Hsuetal.
2013/0038548 Al 2/2013 Kitada et al.
2013/0263042 Al 10/2013 Buening
OTHER PUBLICATIONS

Untied States Patent and Trademark Office, Notice of Allowance
Issued in U.S Appl. No. 13/654,108, Oct. 1, 2014, 9 Pages.

Primary Examiner — Henry Tsai
Assistant Examiner — Juanito Borromeo

(74) Attorney, Agent, or Firm — Jeremy Snodgrass; Judy
Yee; Micky Minhas

(57) ABSTRACT

A graphical user interface is rendered on a display screen of a
touch screen device. The display screen includes a display
area for rendering images, and the graphical user interface of
the application is rendered in a portion of the display area.
Digital touch data is generated in response to user interactions
with a touch-sensitive surface of the touch screen device. the
digital touch data into OS touch events and application touch
events. The OS touch events, application touch events, and
application location information are received at a system
hook. The application location information identifies the por-
tion of the display area of the touch screen device in which the
graphical user interface of the application is rendered. The
system hook filters the OS touch events and the application
touch events based on the application location information
and provides the filtered OS touch events and application
touch events to the application.

24 Claims, 8 Drawing Sheets

Application

106

126

Application

™ System
Hook

Driver

%

| Touch Screen |

Data

US 9,128,548 B2

Sheet 1 of 8

Sep. 8, 2015

U.S. Patent

uoneoslddy
pasueyue-yonoy.

uonesiddy

801~

L "Old
S 7
/ /
/ EEd / 18AIG USO8 Yono|
e —
/ yonoL J ua8Iog yono | slempleH
/ ewbia /
/ /
P [4%% 0L~
ey
/
/ sweAg J
- yono, /4 BN, SN
/ soeuo/ W
& / LI J8Au@sng
ek — o femap
00H / swenz S0 b
woishs | o 7/ esnop 8Ll
/ /
/ paje|nug / 0zt
/ /
-
—
/SIUBA;
9z / %w:OM nduy asnop
\ [eon a01A8(SO 2JempJeH
/
901" ¥0L col
saoinleg wesAg BuneladQ pue Jaaug slempIEH

U.S. Patent

N
(e}

214 218

Sep. 8, 2015 Sheet 2 of 8

202

Receive User-
Generated Touch Input
from Touch Screen

204

Convert Touch Input to
Digital Touch Data

v :
/ /
// //
/ Digital /
/ Touch Data /

Convert Digital Touch e 212
Data to OS Touch
Events

Receive Mouse Input
from Mause

~~210 f
\ 4

/

v 215

Convert Mouse
input into Mouse
Events

/ /
/ 0OSTouch /
/ Events /
s

L - v

/ Location Information
7 regarding the display
/ region occupied by
/ the application on the
/ touch screen

/ Filter by System y
Hook Based on /

the Location /

Real Mouse /
Events /
Information / /

v

s
/ Filtered /
/ Events /

y 4

%Application Processing of Filtered
| Events and Digital Touch Data

Fig. 2

US 9,128,548 B2

222

US 9,128,548 B2

Sheet 3 of 8

Sep. 8, 2015

U.S. Patent

€ old
\\ //
- ™ e T T T
BUBIIO \ = ~ - ~
Buueyy ddy Aiddy (. ewowd v 2o e) /V
g - Buusyy ddy Alddy / /m_.___mp__u_ ddy >_n_a<\
ZLg //// \\\\ /// \\\
008 A oS A
\ S
/ / 7 guolbal
A\ ssedojpamolie N o T glanan
// B v o
. WaAs Yonoy SO \\ N “.spus Emﬁ?\ \\/&
- " Ny
1453 B ~ .
ore y\ FuoiBal sy wv_w:.ﬁ/
. WO} SYELS JUBAT,
N /// \\\
90¢ - / ueas yonoy ayy
p N / uo uoneoidde ay;
" suoiBes sy / Aq paidnoso uoibal
N N BPIsulueAg \\ J oy} BuipJebal
N P / uoEWIOU]
SNl /
20€ 7 / uoiES0T
¥iZ
7
\\ /
\ 1UBAS \
/ wnaso /
/ /
VA 4

oLe

O
™)

US 9,128,548 B2

Sheet 4 of 8

Sep. 8, 2015

U.S. Patent

/

Qi
18105000

asnopy

8y
ur-Bnid Yoo

u-Bnid yono L yum
uonesddy Alug-ssnop

uoneoyddy

asnop pargnwy /

SUBA] /

¥ 'Old

uoneoyddy /
lo /
vy
/
\
/ EEg J8AL usRIdg YoNo
7 yono / cmmbm.cm.:o n hl Qm\mhmrk
/ rewbig /
\ \
N Th Obb~
\\
\ /
- / SjuBAg /
I A —— yonop , :
SO oY/ | |
S T | I18AUQg sng m
vev— 7 aInpopy T
toon / sueny S0 ” !
WashS | g 7 esnopy e —
/ pereinwz s/ 071 -
/ ” /
9Z¥ induj asnop
8o1A8Q SO aJemplen
vOL 201
$90IMIOG WaYsAg BunesadQ pue Jaauq QIBMpIEH

US 9,128,548 B2

Sheet 5 of 8

Sep. 8, 2015

U.S. Patent

SJUBAT
yono|.

(V4]
J3[|0U0D

yonoy.

815
. ui-bnijg yonot

ur-Bnid yonog uim
uones|ddy
psouByu3-yoNo |

uopes|ddy

uonesiddy
BYO

l=2-4

Zli

J9AUQ
U28I9g Yono,

U8RIOg Yono|
a1eMpIeH

oL~

[enIA

anpoy
SO

JaAlQ shg '

sjuang
2snow
palgInwz
uopes|ddy
24
< /
SUBAT
yono |
SO WOy
YOOH ST /
weshs | g - asnop
/ psieinwg wO\
-
/swieng
978 /' 8snop

oL

induj 3SNOYy

$80IAI8G WAYSAS Bunelad pue Jeaug

$0L Z0L -

sJempieH

U.S. Patent

Sep. 8, 2015

Sheet 6 of 8

US 9,128,548 B2

602
Receive User-
@ Generated Touch Input
from Touch Screen
. 604
Convert Touch Input to
Digital Touch Data
608
Digital
624 \ / Touch Data
\ / \
Convert Digital Y - 622 608
Touch Data to
Application .
Cgr?qmands Convert Digital Touch Convert Digital Touch
Through Plua-in Data to Application Data to OS Touch
ugh g Touch Events Events
= 612
632 -~ 626 Y 610
' Application Touch /| Receive Mouse Input
| 0OS Touch Events / P
API / Events from Mouse
Commands /' Application Other 0s -
/| Emulated = |Application Emulated OTP:JC(;S ! sis
Mouse Touch Mouse Events |/ !
Events Events Events y |
Convert Mouse
Input into Mouse
Events
614 l 618
Location Infarmation .
. N / Filter by System
regarding the display / Hook Based on Real Mouse
region occupied by / N
RN / the Location / Events
the application on the / N /
Information
touch screen
l - B20
// /
/ Filtered
Events
k. \ e

Fig. 6

Application Processing of Filtered
Events and Application Commands

621

US 9,128,548 B2

Sheet 7 of 8

Sep. 8, 2015

U.S. Patent

802

SaE 1
KR R

voL

183y

SUOIG MOUS URIRLSRD DR

g

US 9,128,548 B2

Sheet 8 of 8

Sep. 8, 2015

U.S. Patent

804

¥

0

v

Z0L

5

R | N

B

ey

E

¥

o

i

j0 MOUS UOIRULEAR DpR

|

O
(=
~

US 9,128,548 B2

1
SELECTIVE REPORTING OF TOUCH DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 13/654,108 entitled “Selective Reporting
of Touch Data” and filed on Oct. 17, 2012, the entire contents
of which is hereby incorporated by reference.

TECHNICAL FIELD

The following disclosure relates generally to touch screen
devices.

BACKGROUND

A touch screen device may be configured to provide a
two-dimensional graphical display area that includes one or
more areas dedicated to a particular application. The touch
screen device may include a touch-sensitive surface that
enables the touch screen device to detect the presence and
location of touches by a user on the surface of the two-
dimensional graphical display area. The touch screen device
may be a multi-touch device configured to concurrently
detect and respond to multiple different touches.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1is a diagram illustrating the flow of data and the data
processing performed by an exemplary touch screen device
that receives user input from a hardware mouse and also from
a touch screen, processes the received user input to generate
mouse events and OS touch events, and then selectively filters
the mouse events and the OS touch events using a system
hook.

FIG. 2 is a flow chart of an exemplary process for applica-
tion-specific filtering of OS touch events on a touch screen
device using a system hook.

FIG. 3 is aflow chart of an exemplary process implemented
by a system hook to assign an OS touch event to an applica-
tion based on application location information.

FIG. 4 is a diagram illustrating the flow of data and the data
processing performed by an exemplary touch screen device
for reporting of events to a mouse-only application with a
touch plug-in.

FIG. 5is a diagram illustrating the flow of data and the data
processing performed by an exemplary touch screen device
for reporting of events to a touch-enhanced application with a
touch plug-in.

FIG. 6 is a flow chart of an exemplary process for applica-
tion-specific filtering of OS touch events and application
touch events on a touch screen device using a system hook.

FIGS. 7A and 7B illustrate a graphical user interface of an
exemplary touch screen device.

DETAILED DESCRIPTION

Techniques for selective filtering of data on a touch screen
device are described. The touch screen device includes a
touch screen, i.e., display screen having a touch-sensitive
surface positioned over the display screen. The touch screen
is configured to generate touch data in response to user inter-
actions with the touch-sensitive surface. The touch data may
indicate user-generated screen touch events, such, as, for
example, an event associated with one or more fingers or with
one or more input mechanisms (e.g., one or more styluses)

10

15

20

25

30

35

40

45

50

55

60

65

2

that provide input to the touch screen. For example, the event
may include a tap, a double-tip, a flick, a slide, or a press-and-
hold. The touch screen device may be a multi-touch device
configured to receive and respond to multiple points of
engagement (e.g., multiple points of direct physical contact)
on the touch screen simultaneously.

In one implementation, a touch screen device is configured
to enable a user to launch and interact with one application or
with multiple applications concurrently. When a user inter-
acts with the touch screen device to launch an application, the
touch screen device may dedicate an area or region of its
display screen to the launched application to enable the user
to interact with that application. For example, the touch
screen device may display a graphical desktop that covers
substantially all of its display screen, and, in response to a
user launching a particular application, may display a graphi-
cal window dedicated to that application on the graphical
desktop. The user may interact with the application-specific
graphical window to input data for processing by the corre-
sponding application and to view data outputted by the cor-
responding application. The touch screen device may include
a touch screen driver that is configured to receive user-gen-
erated screen touch events (e.g., a finger tap) from the touch
screen of the touch screen device and convert the received
screen touch events into digital touch data. The touch screen
driver may then forward the digital touch data to a module of
the operating system (OS) of the touch screen device. The OS
module may generate OS touch events based on the digital
touch data and may forward the OS touch events to a system
hook. The system hook also may receive location information
identifying the region of the display screen of the touch screen
device occupied by the application (e.g., the area of the dis-
play screen in which the graphical window assigned to the
application is rendered). Based on this location information,
the system hook may filter out some or all of the OS touch
events received from the OS module such that those OS touch
events that are filtered out are not provided (i.e., reported) to
the application for processing.

Using a system hook to selectively filter OS touch events
generated from touch data by an OS module of a touch screen
device may enable touch-enhanced applications to enjoy a
greater flexibility in handling touch data than that provided by
a typical OS, such as Windows 7, which fails to provide such
afine-grained control of digital touch data or OS touch events.
A touch-enhanced application may be any one of: an appli-
cation with code modifications to include the system hook
(i.e., the selective filtering logic), an application without code
modifications but with a plug-in or an extensible module to
include the system hook, or an application without code
modifications but with a secondary helper application or ser-
vice that provides the system hook. For example, a system
hook can be used to filter out all emulated mouse events
generated by the OS module while still allowing other OS
touch events generated by the OS module to be communi-
cated to the application. Emulated mouse events are mouse
events generated from touch data, rather than from interac-
tions with a hardware mouse. Mouse events may include, for
example, a double left mouse button click event, a single left
mouse button click event, and a mouse move event. An emu-
lated mouse event may be, for example, an emulated double
left mouse button click event that is generated in response to
auser double-tapping the touch-sensitive surface of the touch
screen device with a finger. Other OS touch events that may be
generated by the OS module based on received digital touch
data include, for example, a one finger tap event, a two finger
slide event, and a one finger slide event.

US 9,128,548 B2

3

In some implementations, the system hook only filters out
a predetermined subset of the OS touch events. For example,
the system hook may filter out all emulated mouse events or,
alternatively, may filter out only a predetermined subset of all
emulated mouse events. In some implementations, the system
hook may additionally or alternatively filter out all or a pre-
determined subset of the other OS touch events. In some
implementations, the system hook may filter out all OS touch
events (i.e., all emulated mouse events and all other OS touch
events) produced by the OS module, while allowing only
“real” mouse events (i.e., mouse events corresponding to user
interaction with a hardware mouse rather than with a touch
sensitive surface) to be reported to the application.

Since the system hook uses location information to distin-
guish between different applications concurrently displayed
on the touch screen of the touch screen device, the system
hook may be able to provide application-specific filtering
where each particular application has its own filtering param-
eters and is able to selectively filter out its own specific set of
OS touch events and/or digital data. In this manner, each
application may be uniquely (or non-uniquely) associated
with its own filter criteria and may be able to pass or suppress
the reporting of any or all OS touch events (including emu-
lated mouse events) produced by the OS module. This fine-
grained application-specific control of the reporting of OS
touch events enables applications to have much greater flex-
ibility in how little or how much the application will leverage
the touch data processing provided by the OS.

In some implementations, applications may be placed into
two different categories, with a first of the two categories
corresponding to ordinary applications that allow normal pas-
sage of all OS touch events (including emulated mouse events
provided by the OS) without filtering and the second of the
two categories corresponding to enhanced applications that
filter out a predetermined amount of OS touch events (e.g.,
filter out all emulated mouse events provided by the OS) such
that those OS touch events are not reported to the enhanced
applications. Any given application that is launched may be
designated as corresponding to one of the two categories and
filtering (i.e., selective reporting) of OS touch events for that
application may then proceed in accordance with the filtering
criteria assigned to that particular designated category. In
other implementations, more than two categories may be used
for distinguishing applications for the purpose of selective
reporting of OS touch events, with each of the categories
having its own distinct filtering criteria.

The system hook may determine which application’s fil-
tering criteria to apply to a given emulated mouse event or OS
touch event by identifying the starting position and/or the
ending position of the user-generated touch corresponding to
the emulated mouse event or OS touch event. For example, if
the starting position is inside the region of the touch screen
occupied by a particular application (i.e., the region of the
touch screen where the particular application’s graphical user
interface is rendered), the system hook may choose to apply
that applications’ filtering criteria to the digital event, regard-
less of the ending position of the user-generated touch. Addi-
tionally or alternatively, if the starting position is outside the
region of the touch screen occupied by the particular appli-
cation and the ending position is inside the region, then the
system hook may choose not to apply that application’s fil-
tering criteria to the digital event.

In some implementations, the touch screen driver may
convert user-generated touch events from multiple users
simultaneously touching the touch screen device. The touch
screen driver may forward the digital touch data to the OS
module through a virtual bus device. The virtual bus device

10

15

20

25

30

35

40

45

50

55

60

65

4

enables the OS module to treat the digital touch data as if the
data came from a virtual device, such as a virtual USB device.
Thetouch screen driver also may forward a copy ofthe digital
touch data to the application launched on the touch screen
device.

In some implementations, the application location infor-
mation may include, for example, coordinate information
associated with a window of the application, coordinate infor-
mation associated with a window pane of the application, size
information associated with a window of the application,
and/or size information associated with a window pane of the
application. The coordinate information may be, for example,
at a pixel level corresponding to a display resolution of the
display screen of the touch screen device. The location infor-
mation may be dynamically generated in response to the
application be launched on the touch screen device and/or
may be dynamically updated as the region occupied by the
application on the display screen of the touch screen device
changes during operation of the application. In some imple-
mentations, each portion of a region associated with a given
application (e.g., each pane of a window of the application) is
assigned its own different system hook filtering criteria for
filtering out OS touch events.

In some implementations, the operating system may be a
version of the WINDOWS operating system, a version of the
Mac operating system, a version of the Linux operating sys-
tem, or other variants of the same.

FIG. 1is a diagram illustrating the flow of data and the data
processing performed by a touch screen device that receives
user input from a hardware mouse and also from a touch
screen, processes the received user input to generate mouse
events and OS touch events, and then selectively filters the
mouse events and the OS touch events using a system hook.

A hardware mouse 102 is configured to generate user input
data in response to user interactions with the hardware mouse
102. The hardware mouse 102 may be a conventional com-
puter mouse that enables a user to move a graphical pointer
rendered on a display screen of the touch screen device by
moving the mouse and also enables the user to press one or
more buttons on the mouse to trigger different interactions
with an application. The user input data generated by the
hardware mouse 102 may indicate user depression of one or
more buttons on the mouse 102 and may be processed to
determine the direction and speed of user motion of the mouse
102 on a surface. In some implementations, the hardware
mouse 102 may have three buttons and the user input data
generated by the mouse may include data that identifies one or
more of the three buttons with which the user interacted and
also the manner of user interaction with the button (e.g.,
clicked the button, double-clicked the button, pressed and
held down the button, and/or depressed a button that was
previously held down). In some implementations, the hard-
ware mouse 102 may have more or less buttons than three and
may additionally have a scroll wheel. In some implementa-
tions, a trackball controller, a touch pad, a joystick or other
input mechanism that provides control of a graphical pointer
in a manner akin to that provided by a mouse may be used in
addition to or as an alternative to the hardware mouse 102,
and may provide the same or similar user-generated input.

An OS device input 104 is configured to convert the
received user-generated mouse input into real mouse events
106 (e.g., a double-click left mouse button event, a single-
click right mouse button event, and/or motion of the mouse in
a particular direction). The OS device input 104 may be a
device driver or an I/O module of the OS of the touch screen
device. The OS device input 104 may communicate with a
teletypewriter (TTY) port of the touch screen device linked to

US 9,128,548 B2

5

the hardware mouse 102. The OS device input 104 also may
communicate with a universal serial bus (USB) port linked to
the hardware mouse 102. The linking may be a wired link or
a wireless link. In some implementations, the hardware
mouse 102 is integral with the touch screen device such that
the real mouse events 106 are received directly from the
hardware mouse 102, rather than via a port.

The real mouse events 106 are event data that may be
processed to move a graphical pointer hovering over an appli-
cation displayed on a graphical desktop 108 that is displayed
on adisplay screen of the touch screen device. The real mouse
events 106 also may trigger interactions with an application
(e.g., item selection interactions or menu invocation interac-
tions).

A hardware touch screen 110 receives user-generated
touch input on its touch-sensing surface and produces corre-
sponding touch data that is communicated to the touch screen
device. The user may provide the touch input by engaging the
touch screen 110 using one or more input mechanisms, such
as, for example, one or more fingers or styluses. The user may
engage the touch screen 110 by, for example, directly physi-
cally contacting the touch screen 110 with the one or more
input mechanisms or, additionally or alternatively, hovering
the one or more input mechanisms in close physical proxim-
ity to the surface of the touch screen 110 such that the touch
screen 110 is able to sense the touch, despite the lack of direct
physical contact.

The touch input may indicate both a screen location where
each of one or more input mechanisms initiated engagement
(e.g., direct physical contact) with the touch screen 110 and a
corresponding motion over time for each of the one or more
input mechanisms while remaining engaged with the touch
screen 110. The touch input may indicate, for example, a
tapping motion at the point where engagement was initiated
on the touch-sensing surface, a sliding motion on the touch-
sensing surface, a pinch or a zoom motion of two points of
engagement on the touch-sensing surface, and a motion
involving more than two points of engagement on the touch-
sensing surface. In some implementations, the touch screen
110 may generate touch input from more than one user simul-
taneously engaging the touch-sensing surface of the touch-
screen 110. In some implementations, the touch input may
include user identification data that identifies which user pro-
vided each user-specific touch input.

The hardware touch screen 110 may utilize any of a variety
of'touch-sensing technologies including, for example, a resis-
tive touch-sensing technology, a surface acoustic wave touch-
sensing technology, a capacitive touch-sensing technology,
and an infrared touch-sensing technology. In some imple-
mentations, the touch screen 110 may include a capacitive
touch sensor having circuitry to determine the locations of
user inputs on a detection grid by detecting changes in con-
ductor capacitances caused by the one or more input mecha-
nisms used by the user to engage the detection grid. The
detection grid may, for example, be a sensor matrix made up
of a first group of conductors that are positioned substantially
parallel to each other and a second group of conductors that
are positioned substantially parallel to each other, where each
of the conductors in the first array is positioned to intersect
with every conductor in the second array and, vice versa, to
thereby form a matrix. Each of the intersections between a
conductor in the first array and a conductor in the second array
may be a detection point of the grid where capacitances are
measured.

The one or more user input mechanisms may, for example,
be fingers or styluses and may engage the detection grid by
directly physically contacting one or more of the conductors

25

30

40

45

55

6

in the sensor matrix or by otherwise hovering in close physi-
cal proximity to the one or more conductors (e.g., within 10
mm from the surface of the one or more conductors) such that
a detectable change in capacitance at the detection points of
the grid occurs. For example, a user may engage the grid by
positioning a finger in close physical proximity to the grid,
thereby causing the capacitance at the detection points of the
grid that are located near the user’s finger to deviate from a
baseline value by, for example, 10 femtofarads for the detec-
tion points located at the center of the user’s finger and 1
femtofarad for the detection points located at the edge of the
user’s finger.

A touch screen driver 112 may communicate with any port
of the touch screen device that receives data from the hard-
ware touch screen 110. The port may be a serial port, a USB
port, a High-Definition Multimedia Interface (HDMI) port,
etc. In some implementations, the touch screen device is a
single integrated device and the touch screen driver 112
receives data directly from the hardware touch screen 110,
rather than via an external port.

The touch screen driver 112 is configured to convert user-
generated touch input into digital touch data 114. The digital
touch data 114 may include information encoding the type of
user-generated touch input, for example, a one-finger input, a
two-finger input, etc., and the location on the touch-sensing
surface of the touch screen 110 corresponding to the user-
generated touch input. The encoded location information may
identify or be processed to identify the location where
engagement was initiated by the user, such as, for example,
the location where the user initially placed an input mecha-
nism (e.g., a finger) onto the touch-sensing surface, a path on
the touch screen traced by the user input mechanism as it
remained engaged with the touch-sensing surface, and where
engagement was terminated, such as, for example, where the
user raised the input mechanism (e.g., the finger) from the
touch-sensing surface. The precision of the information
encoding the location on the touch-sensing surface may
depend on the underlying sensing technology of the touch-
sensing surface and/or the density of sensor distribution on
the touch-sensing surface. The location information may be
expressed, for example, using screen-space coordinates (e.g.,
pixel coordinates of a display or detection point coordinates
of a detection grid).

The digital touch data 114 also may include location infor-
mation identifying the screen area occupied by a touch-en-
hanced application 116. The touch-enhanced application 116
is an application that receives and responds to touch data
received from a user. The touch-enhanced application 116 is
associated with particular filtering criteria used by a system
hook to selectively suppress reporting of a predetermined set
of OS touch events generated by an OS module based on the
received touch data. FIG. 1 depicts an example of a touch-
enhanced application 116 that has a graphical user interface
corresponding to a rectangular region rendered within the
rendered graphical desktop 108. The rectangular region may,
for example, be the area of a displayed window.

The touch-enhanced application 116 may be an application
program on any operating system, such as, for example, Win-
dows, Macintosh, Linux, Unix, etc. The application program
may be compiled for any processor architectures such as, for
example, a 32-bit architecture, a 64-bit architecture, etc. The
application program also may run on a Java Virtual Machine
(JVM). The application may be written in any programming
language, such as, for example, C++, Java, Python, Tcl/Tk,
etc.

The touch screen driver 112 may obtain the location infor-
mation for the touch-enhanced application 116 from the

US 9,128,548 B2

7

application itself and/or from the OS. The location informa-
tion may include, for example, the screen coordinates (e.g.,
pixel coordinates) of the four corners of a window of the
touch-enhanced application 116 displayed on the desktop 108
or, additionally or alternatively, a designated corner coordi-
nate and a size of the window (e.g., a bottom left corner of the
window is positioned at coordinate 212, 500, with the win-
dow having a 400 pixels by 400 pixels size). The location
information also may include, for example, the screen coor-
dinates of the four corners of all pop-up windows of the
touch-enhanced application 116 or, additionally or alterna-
tively, a designated corner coordinate and a size for each
pop-up window.

The touch screen driver 112 is configured to send the digi-
tal touch data 114 to a virtual bus driver 118 and to the
touch-enhanced application 116. The virtual bus driver 118 is
configured to forward the digital touch data 114 to an OS
module 120 in a manner that results in the OS module 120
treating the digital touch data 114 as if it were coming from a
low-level hardware device, such as a universal serial bus
(USB) device. The virtual bus driver 118 may, for example, be
avirtual USB driver. The virtual bus driver 118 also may be a
driver that uses a different data communications standard,
such as, for example, a small computer system interface
(SCSI) standard.

The OS module 120 is configured to receive digital touch
data 114 from the virtual bus driver 118 and generate OS
touch events based on the digital touch data 114. The OS
touch events may include emulated mouse events 122 and
other OS touch events 124.

In generating emulated mouse events 122, the OS module
120 may convert one particular type of digital touch data 114
into a given type of mouse event. For example, the OS module
120 may convert digital touch data indicating a one-finger tap
motion by a user on the touch screen 110 into an emulated
mouse event of a left-button single click. The OS module 120
may convert digital touch data indicating a one-finger lift
motion by a user on the touch-sensing surface into an emu-
lated mouse event of a left-button lift. The OS module 120
may additionally convert a two-finger press-and-hold motion
by a user on the touch screen 110 into an emulated middle-
button press event or a middle-scroll press event. The OS
module 120 further may convert a one-finger press-and-slide
motion by a user on the touch screen 110 into an emulated
mouse sliding event. The OS module 120 also may convert
some digital touch data 114 into a default emulated mouse
event, such as, for example, an emulated mouse motion event.
For example, the default emulated mouse event may be a
right-button press event. The OS module 120 may choose to
ignore some digital touch data 114 received. For example, the
OS module 120 may disregard digital touch data 114 if the
digital data 114 does not correspond to: a one-finger tap
motion by a user on the touch-sensing surface, a one-finger
lift motion by a user on the touch-sensing surface, a one-
finger press-and-slide motion by a user on the touch-sensing
surface, or a two-finger press-and-hold motion by a user on
the touch-sensing surface.

In some implementations, the touch-enhanced application
116 is unable to distinguish between real mouse events 106
and emulated mouse events 122. That is, in these implemen-
tations, while the system hook 126 is able to distinguish
emulated mouse events 122 from real mouse events 106 based
on their different sources (and is thereby able to selectively
filter them differently), the touch-enhanced application 116 is
unable to make such distinction. Stated differently, the emu-
lated mouse events 122 and the real mouse events 106 appear
identical to the touch-enhanced application 116. For

10

15

20

25

30

35

40

45

50

55

60

65

8

example, an emulated right-button press mouse event gener-
ated from user-interactions with the touch screen 110 and a
real right-button press mouse event generated from user-
interactions with the hardware mouse 102 appear as the same
identical right-button press mouse event to the touch-en-
hanced application 116, which has no ability to discern the
source of the right-button press mouse event.

The OS module 120 may generate other OS touch events
124 that are distinct from the emulated mouse events 122.
These other OS touch events may include, for example, a one
finger tap event, a two-finger pinch event, or a one finger slide
event.

In generating the emulated mouse events 122 and the other
OS touch events 124, the OS module 120 may additionally
provide as part of or in connection with the generated OS
touch event the corresponding location information regarding
the location on the hardware touch screen 110 corresponding
to the user-generated touch input (e.g., an estimate of the
current location on the touch screen 110 that is being engaged
by the user input mechanism). The location information may
include, for example, the two-dimensional screen coordinates
of'the current point of contact of the input mechanism on the
touch screen 110 (e.g., 500, 250, where the first number
specifies a pixel row and the second number specifies a pixel
column in the pixel matrix of the display screen of the touch
screen device).

A system hook 126 is configured to receive real mouse
events 106 from the OS device input 104, emulated mouse
events 122 from the OS module 120, and other OS touch
events 124 from the OS module 120. The system hook 126
also has access to location information regarding the area on
the hardware touch screen 110 occupied by the touch-en-
hanced application 116. The system hook 126 may be real-
ized as a subroutine installed by an application at a point in the
message handling processing of the operating system running
on the touch screen device. The subroutine may monitor or
intercept message/event traffic in the operating system and
process certain types of messages/events before they reach
their target application (e.g., before they reach their target
window procedure in a windows-based operating system). In
some implementations, the system hook 126 may be imple-
mented as a mechanism to intercept function calls. In one
implementation, the interception may be realized by altering
an import table of an application so that the application can
dynamically load a handling subroutine to process digital
events. In another implementation, a wrapper library may be
altered to redirect a function call to dynamically load the
handling subroutine to process digital events. The operating
system of the touch screen device may, for example, be a
version of the WINDOWS operating system, a version of the
Mac operating system, a version of the Linux operating sys-
tem, or other current or future operating systems.

The system hook 126 is configured to selectively filter out
certain of the events it receives based on application location
information. The events received by the system hook 126 may
be associated with a particular application based on the loca-
tion information included in or associated with the events and
the application location information. When an event is
assigned to a particular application (i.e., determined to be
directed to that application based on location information),
the system hook 126 may apply filtering criteria assigned to
that application to determine whether to pass the event to the
application for processing or, alternatively, suppress the event
such that it is not reported to the application. In some imple-
mentations, the system hook 126 always passes real mouse
events 106, irrespective of application location information.

US 9,128,548 B2

9

In some implementations, each touch-enhanced applica-
tion 116 has its own separate system hook 126 specific to that
application that focuses on filtering out events deemed to be
directed to that application based on the application location
information and the event location information. In these
implementations, each touch-enhanced application 116 may,
for example, install its own system hook 126 automatically
when it is launched to thereby enable the touch screen device
to use that system hook 126 to filter operating system events
in accordance with that application’s specific filtering crite-
ria. For example, if the filtering criteria for the touch-en-
hanced application 116 indicate that all OS touch events
should be suppressed (i.e., not reported), the system hook 126
may install a system hook 126 that filters out (i.e., does not
report) emulated mouse events 122 and other OS touch events
124 that are directed to the touch-enhanced application 116.
The system hook 126 may determine that an emulated mouse
event 122 or other OS touch event 124 is directed to the
touch-enhanced application 116 if, for example, the event is
determined, based on its location information, to originate
from within a screen area occupied by the touch-enhanced
application 116.

The touch-enhanced application 116 is configured to
receive digital touch data 114 from the touch screen driver
112 and filtered events from the system hook 126. The touch-
enhanced application 116 may respond to user interactions
with the touch screen 110 by processing the digital touch data
114 received from the touch screen driver 112. The touch-
enhanced application 116 also may respond to user interac-
tions with the hardware mouse 102 and/or with the touch
screen 110 by processing the filtered events.

Specifically, depending on the application’s filtering crite-
ria, the events that were not filtered out by the system hook
126 may include none, all or a subset of the real mouse events
106, the emulated mouse events 122 and the other OS touch
events 124. For example, when the system hook 126 of the
application does not filter out real mouse events 106, the
touch-enhanced application 116 may respond to user interac-
tions with the hardware mouse 102 by receiving and respond-
ing to the corresponding real mouse events 106 generated by
the OS device input 104. Moreover, when the system hook
126 of the application is also configured to filter out the
emulated mouse events 122, the application may not respond
to these events and, therefore, may not provide emulated
mouse functionality (unless the application itself provides
this functionality separately in its processing of the digital
touch data 114).

In another example, when the system hook 126 is config-
ured to not filter out other OS touch events 124, an OS touch
event generated by the OS module 120 in response to a
one-finger tap motion by a user on the touch screen 110 may
be reported to the application 116 for processing. The appli-
cation 116 may, in response to the event, cause a pointer to
appear at the point of contact (or, more generally, the point of
engagement) of the one-finger tap motion. In another
example, an OS touch event generated by the OS module 120
in response to a two-finger pinch by a user on the touch screen
110 may be reported to the application 116 for processing.
The application 116 may, in response to the event, cause a
pop-up window to appear at the point of contact (or, more
generally, point of engagement) on the hardware touch screen
110. The touch-enhanced application 116 may obtain the
location information associated with filtered events from the
OS module 120 by using one or more Application Program
Interfaces (APIs) to query, for example, the OS module 120.

FIG. 2 is a flow chart of a process 200 for application-
specific filtering of OS touch events on a touch screen device

20

40

45

10

using a system hook. For convenience, the process 200 shown
in FIG. 2 references particular componentry described with
respect to FIG. 1. However, similar methodologies may be
applied in other implementations where different componen-
try is used to implement the process 200, or where the func-
tionality of process 200 is distributed differently among the
components shown in FIG. 1.

User touch input generated in response to user interactions
with a touch-sensing surface of the touch screen device is
received (202). The touch-sensing surface may, for example,
be the touch-sensing surface of the hardware touch screen
110.

The user-generated touch input is converted into digital
touch data 206 by a touch screen driver of the touch screen
device (204). The touch screen driver may, for example, be
the touch screen driver 112. The digital touch data 206 may be
provided to or otherwise accessed by an OS module and a
touch-enhanced application for further processing.

The digital touch data 206 is converted into OS touch
events 210 by an OS module (208). The OS module may be,
for example, OS module 120. The digital touch data 206 may
be processed to generate, for example, emulated mouse
events and other OS touch events. For example, the OS mod-
ule 120 may cast some digital touch data 206 as an emulated
left-mouse-down event, an emulated left-mouse-up event, an
emulated right-mouse-down event, an emulated right-mouse-
up event, an emulated mouse-scroll event, etc. The OS mod-
ule 120 also may process digital touch data 206 to generate
other OS touch events including, for example, gesture events
such as tap, press and tap, two finger tap, pinch, expand (i.e.,
a spreading of fingers apart), etc.

OS touch events may be implemented as OS-specific mes-
sages. In some implementations, the OS-specific messages
may include location information, for example, coordinate
information, for the digital touch data 206. The coordinate
information may be matched to a current screen resolution on
the hardware touch screen 110. As described in more detail
below, the coordinate information may be used by the system
hook to filter OS touch events.

User mouse input generated in response to user interac-
tions with a hardware mouse of the touch screen device is
received (212). The hardware mouse may be, for example, the
hardware mouse 102 and may be separate from but commu-
nicatively coupled to the touch screen device via an external
port. Alternatively, the hardware mouse and the touch screen
device may be a single integral device.

The user-generated mouse input is converted into real
mouse events 216 (also referred to as 106) by an OS device
input (215). The OS device input may be, for example, the OS
device input 104.

The system hook filters the OS touch events and, option-
ally, the real mouse events based on application location
information (218). The system hook may be, for example, the
system hook 126.

The system hook 126 may receive from the OS or from the
touch-enhanced application 116 location information 214
specifying the region on the display screen of the touch screen
device occupied by the application 116. The region occupied
by the application 116 may be, for example, a region of the
display screen in which is rendered a window launched by the
application 116 with which the user may interact to provide
data to and/or receive data from the application 116. The
location information 214 may include coordinate information
that specifies the location and the size of the display region
occupied by the application 116. As stated previously, the
coordinate information may be in a two-dimensional format

US 9,128,548 B2

11

and may, for example, identify the coordinate of one or more
corners of the region and may additionally specity the size of
the region.

In some implementations, the application 116 may occupy
multiple regions of the display screen such as, for example,
multiple regions corresponding to multiple different simulta-
neously displayed windows launched by the application (or
otherwise associated with the application) with which the
user may interact to provide data to and/or receive data from
the application 116. The system hook 126 may use the same
filtering criteria for all regions of the application 116. Alter-
natively, the system hook 126 may use different filtering
criteria for each of the multiple different regions of the appli-
cation 116.

In some implementations, the location information 214
may additionally or alternatively include sub-region location
information that identifies a specific portion of a region or
regions occupied by an application. For example, the location
information 214 may include coordinate information that
defines the location and size of certain areas within a main
application window, such as, for example, a ribbon window, a
window pane or panel, a preview window, etc. The system
hook 126 may use the filtering criteria for a given region for
all of its sub-regions. Alternatively, the system hook 126 may
use different filtering criteria for each sub-region. For
example, the system hook 126 may filter out all OS emulated
mouse events generated as a result of touch interactions
within a window pane of a main application window that
displays an interactive three-dimensional globe, while allow-
ing all OS emulated mouse events generated as a result of
touch interactions within a ribbon window within the main
application window to pass to the application 116 for pro-
cessing.

The system hook determines whether or not to filter a given
OS touch event 210 based on the location information asso-
ciated with the OS touch event 210, the location information
associated with the application, and the application’s filtering
criteria. For example, if the location information associated
with an OS touch event 210 and the application location
information indicate a point of contact of the corresponding
user-generated touch input within the region occupied by the
application 116, then the system hook may apply that appli-
cation’s filter criteria to the OS touch event 116 to, for
example, suppress the OS touch event 210, i.e., not report the
event to the application 116 for processing. If the location
information associated with an OS touch event 210 indicates
more than one point of contact, then the system hook may
apply the application’s filter criteria to the OS touch event 210
only if all of the multiple points of contact are within the
region occupied by the application or, alternatively, if at least
one of the multiple points of contact is within the region
occupied by the application. Notably, this same technique for
determining which filter criteria should be applied to a given
OS touch event 210 based on location can be applied to filter
criteria that is specific to different regions or sub-regions
occupied by a particular application.

As noted above, the system hook may optionally apply
application-specific filter criteria that filters out real mouse
events 106 as well as OS touch events 210. In some imple-
mentations, the system hook, however, does not enable appli-
cations to filter out real mouse events 106.

Filtered events 220 is the filtering result produced by the
system hook. Since a touch screen device may display more
than one application 116 concurrently, the filtered events 220
may include a different set of filtered events for each concur-
rently displayed application 116. The filtered events 220 also
may include sets of events for particular regions and/or sub-

10

15

20

25

30

35

40

45

50

55

60

65

12

regions of applications. As noted previously, in some imple-
mentations, each application 116 may have its own system
hook that produces its own set of filtered events 220.

The application receives and processes the filtered events
220 and the digital touch data (222). In some implementa-
tions, the application may receive a different set of filtered
events for each of multiple different regions (e.g., each of the
application’s different windows) occupied by the application
and/or for each of multiple different sub-regions (e.g., win-
dow panes) occupied by the application. Each set of filtered
events may trigger a separate and distinct process specific to
that region (e.g., window) or sub-region (e.g., window pane).

FIG. 3 is a flow chart of a process 300 implemented by a
system hook to assign an OS event to an application based on
application location information. For convenience, the pro-
cess 300 shown in FIG. 3 references particular componentry
described with respect to FIG. 1. However, similar method-
ologies may be applied in other implementations where dif-
ferent componentry is used to implement the process 300, or
where the functionality of process 300 is distributed differ-
ently among the components shown in FIG. 1.

The system hook 126 receives OS touch events 210 from
the OS module 120 and receives application location infor-
mation 214 for the touch-enhanced application 116 from the
OS of the touch screen device or from the application itself.
The system hook 126 may determine whether the user-gen-
erated input that triggered an OS touch event 210 was inside
aregion occupied by the application (302). For example, if the
OS touch event 210 is a single tap event, the system hook 126
may determine whether the screen coordinates indicating the
location where the single tap event occurred on the touch
screen 110 are within the range of coordinates corresponding
to the region occupied by the touch-enhanced application
116. If the region, for example, is an area of an application
window that is 400 pixels by 600 pixels in size having its left
bottom corner positioned at the coordinates 40, 40, the system
hook 126 may determine whether the single tap event
occurred within the region of the application by determining
whether the location of the single tap event has an x coordi-
nate between 40 to 441 pixels and a y coordinate between 40
to 641 pixels.

In another example, if the OS touch event 210 is a one
finger press-and-slide gesture, the system hook 126 may
determine whether both the starting position and the ending
position of the user-generated touch input are within the range
of coordinates corresponding to the region occupied by the
touch-enhanced application 116. In this example, if both the
starting position and the ending position (and, in some imple-
mentations, all positions between the starting and ending
positions) are within the range of coordinates corresponding
to the application region, then the system hook 126 may
conclude that the OS one finger press-and-slide gesture event
is inside the application region.

If the system hook 126 concludes that the OS touch event
210 is inside the application region, the system hook 126 may
apply the filtering criteria assigned to that application to the
OS touch event 210 (304). As noted previously, if the filtering
criteria indicate that the particular OS touch event 210 should
be filtered out, the OS touch event 210 is not reported to the
touch-enhanced application 116. Conversely, if the filtering
criteria indicate that the particular OS touch event 210 should
not be filtered out, the OS touch event 210 passes through the
system hook 126 and is reported to the touch-enhanced appli-
cation 116, which may initiate processing in response to and
based on the OS touch event 210.

If the system hook 126 concludes that the user-generated
input that triggered the OS touch event 210 was not inside a

US 9,128,548 B2

13

region occupied by the application, the system hook 126 may
determine whether the event started from inside the applica-
tion region (306). The system hook 126 may determine
whether the event started from inside the application region
by comparing coordinates of the starting position of the event
(i.e., the coordinates where the user initiated contact with the
touch screen to generate the event) with the range of coordi-
nates corresponding to the application region. For example, if
the OS touch event 210 is a one finger press-and-slide gesture
event, the system hook 126 may compare the coordinates
corresponding to the screen location where the user’s one
finger initiated contact with the touch screen 110 with the
range of coordinates corresponding to the application region.

Ifthe screen coordinates where the event started fall within
the range of coordinates corresponding to the application
region, the system hook 126 may conclude that the event
started from inside the region and, therefore, may apply the
corresponding application’s filtering criteria to the OS touch
event 210 (308). If the filtering criteria indicate that the par-
ticular OS touch event 210 should be filtered out, the OS
touch event 210 is not reported to the touch-enhanced appli-
cation 116. Conversely, if the filtering criteria indicate that the
particular OS touch event 210 should not be filtered out, the
OS touch event 210 passes through the system hook 126 and
is reported to the touch-enhanced application 116, which may
initiate processing in response to and based on the OS touch
event 210.

If the system hook 126 concludes that the user-generated
input that triggered the OS touch event 210 was not inside a
region occupied by the application and did not start inside a
region occupied by the application, the system hook 126 may
determine whether the event ended within the application
region (310). The system hook 126 may determine whether
the event ended inside the application region by comparing
the coordinates of the ending position of the event (i.e., the
coordinates of the user contact with the touch screen at the
end of the interaction that triggered the event) with the range
of coordinates corresponding to the application region. For
example, if the OS touch event 210 is a one finger press-and-
slide gesture event, the system hook 126 may compare the
coordinates corresponding to the screen location where the
user’s one finger finished its slide movement on the touch
screen 110 with the range of coordinates corresponding to the
application region.

If'the screen coordinates where the event ended fall within
the range of coordinates corresponding to the application
region, the system hook 126 may conclude that the event
ended inside the region and, therefore, may apply the corre-
sponding application’s filtering criteria to the OS touch event
210 (312). If the filtering criteria indicate that the particular
OS touch event 210 should be filtered out, the OS touch event
210 is not reported to the touch-enhanced application 116.
Conversely, if the filtering criteria indicate that the particular
OS touch event 210 should not be filtered out, the OS touch
event 210 passes through the system hook 126 and is reported
to the touch-enhanced application 116, which may initiate
processing in response to and based on the OS touch event
210.

If the system hook 126 concludes that the user-generated
input that triggered the OS touch event 210 was not inside a
region occupied by the application, did not start inside a
region occupied by the application, and did not end inside a
region occupied by the application, the system hook 126 does
not apply the application’s filtering criteria to the OS touch
event 210 and the OS touch event 210 is allowed to pass (314).
In some implementations, allowing the OS touch event 210 to
pass results in the OS touch event 210 being reported to the

20

25

40

45

14

touch-enhanced application 116. In other implementations,
allowing the OS touch event 210 to pass results in the OS
touch event 210 not being reported to the touch-enhanced
application.

In some implementations, each touch-enhanced applica-
tion 116 has its own system hook 126 with its own filtering
criteria and each system hook 126 independently monitors
the OS touch events 210 to determine which OS touch events
210 should be reported or not reported to its corresponding
touch-enhanced application 116.

In some implementations, the system hook 126 may per-
form operations 302 through 314 for an OS touch event 210
for a sub-region (e.g., a window pane) of the touch-enabled
application 116, instead of or in addition to a region (e.g., a
window). In some implementations, the system hook 126
may perform operations 302 through 312 for an OS touch
event 210 once for each of multiple different regions (e.g.,
multiple different windows) and/or for each of multiple dif-
ferent sub-regions (e.g., multiple different window panes) of
the touch-enabled application 116 before allowing the OS
touch event 210 to pass through the system hook.

In some implementations, only a subset of operations 302
through 312 are performed for the application region, sub-
region, regions, and/or sub-regions. For example, if opera-
tions 302 and 304 are performed but operations 306 through
312 are not performed, an OS touch event 210 may be desig-
nated for potential filtering by the touch-enhanced applica-
tion 116 only if the OS touch event 210 is determined to be
inside that application’s display region, sub-region, regions,
and/or sub-regions. In another example, if operations 302,
304, 310 and 312 are performed but operations 306 and 308
are not performed, an OS touch event 210 may be designated
for potential filtering by the touch-enhanced application 116
only if the OS touch event 210 is determined to either be
inside or to start outside but end inside that application’s
display region, sub-region, regions, and/or sub-regions. In yet
another example, if operations 302, 304, 306 and 308 are
performed but operations 310 and 312 are not performed, an
OS touch event 210 may be designated for potential filtering
by the touch-enhanced application 116 only if the OS touch
event 210 is determined to either be inside or to start inside
that application’s display region, sub-region, regions, and/or
sub-regions.

FIG. 4 is a diagram illustrating the flow of data and the data
processing performed by an exemplary touch screen device
that receives user input from a hardware mouse and also from
a touch screen, processes the received user input to generate
mouse events, OS touch events, and application touch events,
and then selectively filters the mouse events, the OS touch
events, and the application touch events using a system hook.
FIG. 4 depicts an implementation of a system and data flow
similar to that described above with respect to FIG. 1 with the
exception that the touch-enhanced application 116 is identi-
fied as a mouse-only application with a touch plug-in 416 that
is able to provide emulated mouse events to the application
416 via a system hook 426.

The system includes a hardware mouse 102 and an OS
device input 104 configured to produce real mouse events 106
that are communicated to the system hook 426 for filtering.
The system further includes a hardware touch screen 110 in
communication with a touch screen driver 112 that is config-
ured to convert user-generated touch input into digital touch
data 114 and to send the digital touch data to a touch plug-in
418 of the application 416 and also to an OS module 120 via
a virtual bus driver 118. The OS module 120 is configured to
generate OS emulated mouse events 122 and/or other OS
touch events 124 and to communicate these events 122 and/or

US 9,128,548 B2

15

124 to the system hook 426 for filtering. Implementation
examples of each of the above-noted elements depicted in
FIG. 4 have been described previously.

The application 416 is a mouse-only application that has
been enhanced to handle touch through use of a touch plug-in
418. Specifically, the original (or underlying) mouse-only
application (i.e., the application 416 without the touch plug-in
418) is an application configured to receive and respond to
mouse events (i.e., events generated in response to user input
provided through user-interaction with a mouse (e.g., mouse
102)) and not to touch events (i.e., touch-specific events gen-
erated in response to user input provided through user-inter-
action with a hardware touch screen (e.g., touch screen 110)).
However, by adding the touch plug-in 418, the original
mouse-only application has been enhanced to respond to user
touch input through the operation of the touch plug-in 418.
The mouse-only application with touch plug-in 416 is asso-
ciated with particular filtering criteria used by the system
hook 426 to selectively suppress reporting of a predetermined
set of OS touch events generated by an OS module based on
received touch data and/or a predetermined set of application
emulated mouse events generated by the application 416.
FIG. 4 depicts an example of an application 416 that has a
graphical user interface corresponding to a rectangular region
rendered within the rendered graphical desktop 108. The
rectangular region may, for example, be the area of a dis-
played window.

In some implementations, touch plug-in 418 is a “helper
application” that is an executable process separate from the
underlying (or original) application’s executable process, and
not a traditional plug-in that is loaded and integrated with the
underlying (or original) application’s executable process at
runtime. However, the “helper application” may still make
use of the main application’s special APIs, such as, for
example, via Component Object Model (COM).

The mouse-only application with touch plug-in 416 may be
an application program on any operating system, such as, for
example, Windows, Macintosh, Linux, Unix, etc. The appli-
cation program may be compiled for any processor architec-
tures such as, for example, a 32-bit architecture, a 64-bit
architecture, etc. The application program also may runon a
Java Virtual Machine (JVM). The application may be written
in any programming language, such as, for example, C++,
Java, Python, Tcl/Tk, etc.

As noted above, the application 416 includes the touch
plug-in 418. The touch-plug-in 418 is software code that is
configured to add specific abilities of handling touch data to
the original mouse-only application. The touch plug-in 418
may convert digital touch data 114 into application program
interface (API) commands 422 that are recognizable by the
underlying mouse-only application and that instruct the
underlying mouse-only application to execute corresponding
operations.

The touch plug-in 418 may include a mouse controller 420.
The mouse controller 420 is configured to generate applica-
tion emulated mouse events 424 in response to digital touch
data 114 and to communicate the emulated mouse events 424
to the original mouse-only application. In this implementa-
tion, the original mouse-only application is configured to
receive mouse events only from the underlying operating
system (OS). As such, the touch plug-in 418 is required to
provide the application emulated mouse events 424 to the
original mouse-only application as mouse events that are sent
through the operating system channels (and the system hook
426) back to the original mouse-only application. Notably,
and depending on the filter criteria associated with the appli-
cation 416 implemented by the system hook 426, the original

10

15

20

25

30

35

40

45

50

55

60

65

16

mouse-only application may receive real mouse events 106
generated by the hardware mouse 102, OS emulated mouse
events 122 generated by the OS module 120 based on the
digital touch data 114, and/or application emulated mouse
events 424 generated by the touch plug-in 418 based on the
digital touch data 114. The original mouse-only application is
configured to execute operations in response to mouse events
received from the OS and, notably, is typically unable to
identify the source that generated the mouse events (i.e., it is
typically unable to distinguish between mouse events gener-
ated by the mouse 102, mouse events generated by the OS
module 120 and mouse events generated by the touch plug-in
418). In other implementations, the original mouse-only
application is able to identify the source of mouse events and
distinguish between the mouse events based on their source.

The touch plug-in 418 may provide location information of
the mouse-only application (e.g., the location of the window
corresponding to the mouse-only application) and/or location
information for application emulated mouse events (e.g., the
location where the application emulated lefi-button single
click event took place) to the system hook 426. The touch
plug-in 418 also may provide filtering criteria for the appli-
cation 416 to the system hook 426.

The system hook 426 is an implementation example of the
system hook 126 that is capable of additionally or alterna-
tively receiving and processing application emulated mouse
events 424. The system hook 426 is configured to receive real
mouse events 106 from the OS device input 104, OS emulated
mouse events 122 from the OS module 120, other OS touch
events 124 from the OS module 120, and/or application emu-
lated mouse events 424 from the touch plug-in 418. The
system hook 426 may selectively suppress OS touch events
(including OS emulated mouse events 122 and other OS
touch events 124), real mouse events 106 and/or application
emulated mouse events 424 to thereby prevent any, one, some
or all of these events from being reported to the original
mouse-only application.

In one implementation example, the system hook 426
receives mouse events from the OS device input 104, the OS
module 120 and the touch plug-in 418 as data messages that
include a flag or a code used to distinguish the different mouse
events based on their source. For example, a real mouse event
122 may include a code of “000”, an OS emulated mouse
event 122 may include a code “500”, and an application
emulated mouse event may include a code “200.” The system
hook 426 may use these codes identify the source of the
mouse event and to selectively filter out mouse events based
on the identified source. For example, if the filter criteria for
the application 416 indicates that all OS emulated mouse
events 122 should be filtered out (i.e., not reported to the
application 416) the system hook 426 may prevent any mouse
events received by the system hook 426 that include the code
“500” from being reported to the application 416. The system
hook 426 may perform this source filtering in conjunction
with the event filtering operations as described previously for
system hook 126 based on application location information
and event location information.

FIG. 5 is another diagram illustrating the flow of data and
the data processing performed by an exemplary touch screen
device that is similar to that depicted in FIG. 4 with the
exception that the mouse-only application with touch plug-in
416 has been replaced by a touch-enhanced application with
touch plug-in 516.

The touch-enhanced application with touch plug-in 516
includes an original (or underlying) touch-enhanced applica-
tion thatis able to receive and respond to touch input provided
by a user as well as mouse input provided by a user. In some

US 9,128,548 B2

17

implementations, the original touch-enhanced application is
configured to execute application-specific operations in
response to OS touch events generated by user touch input
and is not configured to separately process digital touch data
114 to trigger execution of application-specific operations in
response to user touch input. The application 516 further
includes a touch plug-in 518 that enhances the touch capa-
bilities of the original touch-enhanced application.

The touch-enhanced application with touch plug-in 516
may be an application program on any operating system, such
as, for example, Windows, Macintosh, Linux, Unix, etc. The
application program may be compiled for any processor
architectures such as, for example, a 32-bit architecture, a
64-bit architecture, etc. The application program also may
run on a Java Virtual Machine (JVM). The application may be
written in any programming language, such as, for example,
C++, Java, Python, Tcl/Tk, etc.

As noted above, the application 516 includes the touch
plug-in 518. The touch-plug-in 518 is software code that is
configured to enhance, modify or fully replace the touch
processing abilities of the original touch-enhanced applica-
tion. The touch plug-in 518 may convert digital touch data
114 into application program interface (API) commands 522
that are recognizable by the underlying touch-enhanced
application and that instruct the underlying touch-enhanced
application to execute corresponding operations.

The touch plug-in 518 may include a touch controller 520.
Thetouch controller 520 is configured to generate application
emulated mouse events 524 and other application touch
events 526 in response to digital touch data 114 and to com-
municate the events 524 and 526 to the original touch-en-
hanced application via a system hook 528.

In this implementation, the original touch-enhanced appli-
cation is configured to receive mouse events only from the
underlying OS. As such, the touch plug-in 518 is required to
provide the application emulated mouse events 524 to the
original touch-enhanced application as mouse events that are
sent through the operating system channels (and the system
hook 528) back to the original touch-enhanced application.
Notably, and depending on the filter criteria associated with
the application 516 implemented by the system hook 528, the
touch-enhanced application may receive real mouse events
106 generated by the hardware mouse 102, OS emulated
mouse events 122 generated by the OS module 120 based on
the digital touch data 114, and/or application emulated mouse
events 524 generated by the touch plug-in 518 based on the
digital touch data 114. The original touch-enhanced applica-
tion is configured to execute operations in response to mouse
events received from the OS and, notably, is typically unable
to identify the source that generated the mouse events (i.e., it
is typically unable to distinguish between mouse events gen-
erated by the mouse 102, mouse events generated by the OS
module 120 and mouse events generated by the touch plug-in
518). In other implementations, the original touch-enhanced
application is able to identify the source of mouse events and
is able to distinguish between the mouse events based on their
source.

In this implementation, the original touch-enhanced appli-
cation is configured to receive some or all of other touch
events (i.e., touch events that are not mouse emulation events)
only from the underlying OS. As such, the touch plug-in 518
is required to provide some or all of the other application
touch events 526 to the original touch-enhanced application
as touch events that are sent through the operating system
channels (and the system hook 528) back to the original
touch-enhanced application. Notably, and depending on the
filter criteria associated with the application 516 imple-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

mented by the system hook 528, the touch-enhanced appli-
cation may receive other OS touch events 124 generated by
the OS module 120 based on the digital touch data 114 and/or
other application touch events 526 generated by the touch
plug-in 518 based on the digital touch data 114. The original
touch-enhanced application is configured to execute opera-
tions in response to touch events received from the OS and,
notably, is typically unable to identify the source that gener-
ated the touch events (i.e., it is typically unable to distinguish
between touch events generated by the OS module 120 and
touch events generated by the touch plug-in 518). In other
implementations, the original touch-enhanced application is
able to identify the source of touch events and is able to
distinguish between touch events based on their source.

The touch plug-in 518 may provide location information of
the touch-enhanced application (e.g., the location of the win-
dow corresponding to the touch-enhanced application) and/or
location information for application emulated mouse events
(e.g., the location where the emulated left-button single click
event took place) or other application touch events (e.g., the
location of a pinch or zoom event) to the system hook 528.
The touch plug-in 518 also may provide filtering criteria for
the application 516 to the system hook 528.

The system hook 528 is an implementation example of the
system hook 126 that is capable of additionally or alterna-
tively receiving and processing application emulated mouse
events 524 and/or other application touch events 526. The
system hook 528 is configured to receive real mouse events
106 from the OS device input 104, OS emulated mouse events
122 from the OS module 120, other OS touch events 124 from
the OS module 120, application emulated mouse events 524
from the touch plug-in 518, and/or other application touch
events 526 from the touch plug-in 518. The system hook 528
may selectively suppress OS touch events (including OS
emulated mouse events 122 and/or other OS touch events
124), real mouse events 106, and/or application touch events
(including application emulated mouse events 524, and/or
other application touch events 526) to thereby prevent any,
one, some or all of these events from being reported to the
original touch-enhanced application.

In one implementation example, the system hook 528
receives other OS touch events 124 from the OS module 120
(e.g., a pinch event) and other application touch events 526
from the touch plug-in 518 (e.g., a pinch event) as data mes-
sages that include a flag or a code used to distinguish the
different touch events based on their source. For example, an
other OS touch event 124 may include a code of “500 and an
other application touch event 526 may include a code “200.”
The system hook 528 may use these codes to identify the
source of the touch event and then selectively filter out touch
events based on the identified source. For example, if the filter
criteria for the application 516 indicates that all other OS
touch events 124 should be filtered out (i.e., not reported to
the application 516) the system hook 528 may prevent any
other touch event (i.e., a touch event that is not an emulated
mouse event) received by the system hook 528 that include
the code “500” from being reported to the application 516.
The system hook 528 may perform this source filtering in
conjunction with the event filtering operations as described
previously for system hook 126 based on application location
information and event location information.

FIG. 6 is a flow chart of an exemplary process for applica-
tion-specific filtering of OS touch events and application
touch events on a touch screen device using a system hook.
For convenience, the process 600 shown in FIG. 6 references
particular componentry described with respect to FIG. 5.
However, similar methodologies may be applied in other

US 9,128,548 B2

19

implementations where different componentry is used to
implement the process 600, or where the functionality of
process 600 is distributed differently among the components
shown in FIG. 5.

User touch input generated in response to user interactions
with a touch-sensing surface of the touch screen device is
received (602). The touch-sensing surface may, for example,
be the touch-sensing surface of the hardware touch screen
110.

The user-generated touch input is converted into digital
touch data 606 by a touch screen driver of the touch screen
device (604). The touch screen driver may, for example, be
the touch screen driver 112. The digital touch data 606 may be
provided to or otherwise accessed by an OS module and a
touch-enhanced application for further processing.

The digital touch data 606 is converted into OS touch
events 610 by an OS module (608). The OS module may be,
for example, OS module 120. The digital touch data 606 may
be processed to generate, for example, emulated mouse
events and other OS touch events. For example, the OS mod-
ule 120 may cast some digital touch data 606 as an emulated
left-mouse-down event, an emulated left-mouse-up event, an
emulated right-mouse-down event, an emulated right-mouse-
up event, an emulated mouse-scroll event, etc. The OS mod-
ule 120 also may process digital touch data 606 to generate
other OS touch events including, for example, gesture events
such as tap, press and tap, two finger tap, pinch, expand (i.e.,
a spreading of fingers apart), etc.

OS touch events may be implemented as OS-specific mes-
sages. In some implementations, the OS-specific messages
may include location information, for example, coordinate
information, for the digital touch data 606. The coordinate
information may be matched to a current screen resolution on
the hardware touch screen 110. As described in more detail
below, the coordinate information may be used by the system
hook to filter OS touch events.

The digital touch data 606 is also converted into applica-
tion touch events 626 by the touch controller 520 of the touch
plug-in 518 (622). Application touch events 626 include
application emulated mouse events and other application
touch events. For example, the touch controller 520 of the
touch plug-in 518 may cast some digital touch data 606 as an
emulated left-mouse-down event, an emulated left-mouse-up
event, an emulated right-mouse-down event, an emulated
right-mouse-up event, an emulated mouse-scroll event, etc.
As discussed above, an application emulated mouse event is
one form of an application touch event. The touch controller
520 of the touch plug-in 518 also may process digital touch
data 606 to generate other application touch events including,
for example, gesture events such as tap, press and tap, two
finger tap, pinch, expand (i.e., a spreading of fingers apart),
etc.

In some implementations, the application touch events
may include location information, for example, coordinate
information, for the digital touch data 606. The coordinate
information may be matched to a current screen resolution on
the hardware touch screen 110. As described in more detail
below, the coordinate information may be used by the system
hook to filter application touch events.

The digital touch data 606 is additionally converted into
API commands 632 by touch plug-in 518 (624). The API
commands 632 are recognizable by, for example, the under-
lying touch-enhanced application to which the touch plug-in
518 applies.

User mouse input generated in response to user interac-
tions with a hardware mouse of the touch screen device is
received (612). The hardware mouse may be, for example, the

15

20

40

45

50

20

hardware mouse 102 and may be separate from but commu-
nicatively coupled to the touch screen device via an external
port. Alternatively, the hardware mouse and the touch screen
device may be a single integral device.

The user-generated mouse input is converted into real
mouse events 616 by an OS device input (615). The OS device
input may be, for example, the OS device input 104.

The system hook filters one, some, or all of the OS touch
events 610, the real mouse events 616 and the application
touch events 626 based on application location information
and application filter criteria (618). The system hook may be,
for example, the system hook 528.

The system hook 528 may receive from the OS or from, for
example, the touch-enhanced application with touch plug-in
516 location information 614 specifying the region on the
display screen of the touch screen device occupied by the
application 516. The region occupied by the application 516
may be, for example, a region of the display screen in which
is rendered a window launched by the application 516 with
which the user may interact to provide data to and/or receive
data from the application 516. The location information 614
may include coordinate information that specifies the loca-
tion and the size of the display region occupied by the appli-
cation 516. As stated previously, the coordinate information
may be in a two-dimensional format and may, for example,
identify the coordinate of one or more corners of the region
and may additionally specify the size of the region.

In some implementations, the application 516 may occupy
multiple regions of the display screen such as, for example,
multiple regions corresponding to multiple different simulta-
neously displayed windows launched by the application (or
otherwise associated with the application) with which the
user may interact to provide data to and/or receive data from
the application 516. The system hook 528 may use the same
filtering criteria for all regions of the application 516. Alter-
natively, the system hook 528 may use different filtering
criteria for each of the multiple different regions of the appli-
cation 516.

In some implementations, the location information 614
may additionally or alternatively include sub-region location
information that identifies a specific portion of a region or
regions occupied by an application. For example, the location
information 614 may include coordinate information that
defines the location and size of certain areas within a main
application window, such as, for example, a ribbon window, a
window pane or panel, a preview window, etc. The system
hook 528 may use the filtering criteria for a given region for
all of its sub-regions. Alternatively, the system hook 528 may
use different filtering criteria for each sub-region. For
example, the system hook 528 may filter out all OS emulated
mouse events generated as a result of touch interactions
within a window pane of a main application window that
displays an interactive three-dimensional globe, while allow-
ing all OS emulated mouse events generated as a result of
touch interactions within a ribbon window within the main
application window to pass to the application 516 for pro-
cessing.

The system hook determines whether or not to filter a given
OS touch event 610 or application touch event 626 based on
the location information associated with the OS touch event
610 or application touch event 626, the location information
associated with the application, and the application’s filtering
criteria. For example, if the location information associated
with an application touch event 626 and the application loca-
tion information indicate a point of contact of the correspond-
ing user-generated touch input within the region occupied by
the application 516, then the system hook may apply that

US 9,128,548 B2

21

application’s filter criteria to the application touch event 626
to, for example, suppress the application touch event 626, i.e.,
not report the event to the application 516 for processing. If
the location information associated with an application touch
event 626 indicates more than one point of contact, then the
system hook may apply the application’s filter criteria to the
application touch event 626 only if all of the multiple points
of contact are within the region occupied by the application
or, alternatively, if at least one of the multiple points of contact
is within the region occupied by the application. Notably, this
same technique for determining which filter criteria should be
applied to a given application touch event 626 based on loca-
tion can be applied to filter criteria that is specific to different
regions or sub-regions occupied by a particular application.

As noted above, the system hook may optionally apply
application-specific filter criteria that filters out real mouse
events 616 as well as OS touch events 610 and/or application
touch events 626. In some implementations, the system hook,
however, does not enable applications to filter out real mouse
events 616.

Filtered events 620 is the filtering result produced by the
system hook. Since a touch screen device may display more
than one application 516 concurrently, the filtered events 620
may include a different set of filtered events for each concur-
rently displayed application 516. The filtered events 620 also
may include sets of events for particular regions and/or sub-
regions of applications. As noted previously, in some imple-
mentations, each application 516 may have its own system
hook that produces its own set of filtered events 620. Notably,
a touch screen device may display many different types of
touch-enhanced applications 116 concurrently, including a
mouse-only application with touch plug-in 416 and a touch-
enhanced application with touch plug-in 516. A single system
hook may be used to filter out events for all or a subset of the
displayed applications. Alternatively, each application may
have its own system hook dedicated to filtering out events
specific to that application.

The application receives and processes the filtered events
620 and the API commands (621). In some implementations,
the application may receive a different set of filtered events
for each of multiple different regions (e.g., each of the appli-
cation’s different windows) occupied by the application and/
or for each of multiple different sub-regions (e.g., window
panes) occupied by the application. Each set of filtered events
may trigger a separate and distinct process specific to that
region (e.g., window) or sub-region (e.g., window pane).

FIG. 7A illustrates an exemplary graphical user interface
(GUI) 700 of a touch screen device that is configured to
selectively filter out touch events using a system hook. The
GUI 700 includes a graphical desktop 702 in which is dis-
played a graphical window 704 of a touch-enhanced applica-
tion. The graphical window 704 includes a window pane 706
in which is displayed a graphical map 708 and a snapshot
button 710.

In one example, the graphical window 704 is the user
interface of the mouse-only application with touch plug-in
416. The original mouse-only application is configured to
enable a user to pan, zoom-in, and zoom-out of the map 708
displayed within the window pane 706 in response to mouse
events received from the operating system. In this example,
the operating system is touch-enhanced to provide OS emu-
lated mouse events in addition to real mouse events. The
original mouse-only application, therefore, is able to receive
mouse events generated by the hardware mouse 102 and the
OS module 120 and is typically unable to discern whether a
given mouse event originated from the OS device input 104 in
response to user interactions with a hardware mouse 102 or

20

30

40

45

55

22

instead originated from the OS module 120 in response to
user interactions with a hardware touch screen 110. Through
use of the touch plug-in 418, the original mouse-only appli-
cation is enhanced to receive emulated mouse events and API
commands from the touch plug-in 418. The touch plug-in
418, when used in combination with a system hook, is able to
provide more flexible touch-based inputs to the original
mouse-only application than what was otherwise available
through use of only the touch-enhanced OS.

An example of such an enhancement is now described with
reference to FIG. 7B, which depicts the location of three
touch points 712, 714 and 716 on the GUI 700. The touch
points 712 and 714 may be, for example, the touch locations
where a user placed a first and a second finger, respectively, of
his left hand on the touch-sensitive surface of the hardware
touch screen 110. The touch point 716 may be, for example,
the location where the user placed a finger of his right hand on
the touch-sensitive surface of the hardware touch screen 110.
In this example, the user is assumed to have placed the touch
point 712, 714 and 716 sequentially and in that order on the
touch-sensitive surface of the touch screen 110 such that, at
the end of the sequential placement, all three touch points
712, 714 and 716 are concurrently positioned on the touch
screen 110 (i.e., all three fingers are concurrently contacting
the touch-sensitive surface at the corresponding touch point
locations).

To illustrate the enhanced touch capabilities achieved
through use of the touch plug-in 418 and the system hook, the
operation of the original mouse-only application without the
system hook and touch plug-in is first described. The OS is
able to generate emulated mouse events based on touch data
but does so in a rigid fashion that is application agnostic (i.e.,
that does not vary from application to application). In this
example, the OS is configured to generate a mouse-drag event
when it detects a touch point contacting and then moving
while maintaining contact with the touch screen. Thus, when
the touch point 712 is placed on the touch screen and then
moved, the OS, through use of the OS module 120, generates
an OS emulated mouse-drag event and sends it to the mouse-
only application. The mouse-only application may receive
the mouse-drag event and may pan the map 708 in response to
the event.

Notably, due to the limited touch processing capabilities of
the OS in this example, the OS completely ignores the sub-
sequently placed touch points 714 and 716. The user placed
the touch point 716 onto the snapshot button 710 to take a
digital snapshot (e.g., generate a jpeg file of the displayed
map) of the map currently presented in the window pane 706.
Unfortunately, because of the limited OS touch capabilities,
this touch point 716 was completely ignored by the applica-
tion and no snapshot was taken.

By using a system hook 426 and a touch plug-in 418, the
mouse-only application may be enhanced to provide much
greater flexibility in how it responds to touch. In this example,
the touch plug-in 418 is configured to provide filter criteria to
the system hook 426 that causes all OS emulated mouse
events to be suppressed (i.e., not reported to the mouse-only
application) and to enable application emulated mouse events
to be reported. Thus, when a user places the first touch point
712 on the touch screen and begins to move it, the system
hook 426 prevents the reporting of the OS emulated mouse
drag event to the mouse-only application and, therefore, pre-
vents the mouse-only application from panning the map in
response to the movement of the first touch point 712.

Unlike the OS, the touch plug-in 418 is capable of process-
ing the digital touch data to generate touch events or API
commands for all three touch points. The touch plug-in 418

US 9,128,548 B2

23

detects the first touch point 712 and the second touch point
714 and subsequent movement of those two touch points.
Depending on how the touch points 712 and 714 move, the
touch plug-in 418 may issue an API command to the mouse-
only application instructing the mouse-only application to
perform a corresponding map navigation operation on the
displayed map 708, such as, for example, a pan, a zoom-in, or
a zoom-out operation. For example, the touch plug-in 418
may generate and send an API command to the mouse-only
application to cause the mouse-only application to execute a
zoom-in operation on the map 708 in response to the user
spreading out his fingers or to execute a zoom-out operation
on the map 708 in response to the user pinching his fingers. In
this manner, the touch plug-in 418 is able to enhance the
mouse-only application to allow more complex touch-based
interactions with the map 708 than what was possible through
use of only the touch-enhanced OS.

Additionally, the touch plug-in 418 detects the placement
of the third touch point 716 in a location of the graphical
snapshot button 710. Because the touch plug-in 418 is pro-
grammed to enable mouse emulation for touch points located
near or on the graphical snapshot button 710, the touch plug-
in 418 generates a mouse left-button hold event in response to
detecting placement of the third touch point 716. The touch
plug-in 418 sends the left mouse button hold event to the
mouse-only application through the system hook 426 (which
does not filter out the event) and the mouse-only application
responds to the event by taking a snapshot of the map 708. As
such, the touch plug-in 418 allows a user to dynamically
zoom in or out of map 708 by pinching or expanding two
fingers of a first hand while using a finger of a second hand to
take a snapshot of the map 708 without ever having to lift the
two fingers of the first hand.

The touch input handling provided by the touch plug-in
418 is much more flexible than that offered by the OS and is
achieved by not only generation of corresponding API com-
mands and application touch events (in this example, appli-
cation emulated mouse events) but also by the system hook
426 that filters out the OS touch events that otherwise would
conflict with the application touch events. Indeed, if the sys-
tem hook 426 had not filtered out the OS emulated mouse
drag event, the mouse-only application may, for example,
have concurrently performed a map pan operation in response
to the OS emulated mouse drag event based on the movement
of touch point 712 and a zoom-in or zoom-out operation in
response to the API commands generated by the touch plug-in
418 based on the movement of both of the touch points 712
and 714. This combination of a pan and a zoom-in/zoom-out
operation in response to the movement of the touch points 712
and 714 is undesirable as it makes map navigation difficult
and visually confusing.

In another example, the graphical window 704 is the user
interface of the touch-enhanced application with touch plug-
in 516. The original touch-enhanced application is configured
to enable a user to pan, zoom-in, and zoom-out of the map 708
displayed within the window pane 706 in response to mouse
events, including real mouse events and OS emulated mouse
events, received from the OS and also in response to other OS
touch events received from the OS. In this example, the OS is
touch-enhanced to provide both OS emulated mouse events
and other OS touch events. The other OS touch events may
include, for example, a pinch event, which corresponds to two
touch points that are concurrently in contact with the touch
screen being moved closer together, and a spread event,
which corresponds to two touch points that are concurrently
in contact with the touch screen being moved farther apart.
The OS, however, is unable to handle more than two touch

10

15

20

25

30

35

40

45

50

55

60

65

24

points concurrently placed on the touch screen. In other
words, the OS ignores placement and movement of any touch
point placed on the touch screen after the placement of the
first two touch points while the first two touch points remain
concurrently in contact with the touch screen.

The original touch-enhanced application, therefore, is able
to receive mouse events generated by the hardware mouse
102 and the OS module 120 and is typically unable to discern
whether a given mouse event originated from the OS device
input 104 in response to user interactions with a hardware
mouse 102 or instead originated from the OS module 120 in
response to user interactions with a hardware touch screen
110. Moreover, the original touch-enhanced application is
able to receive two touch point OS touch events (e.g., an OS
touch event corresponding to a two touch point gesture such
as, for example, a pinch event) generated by the OS module
120 in response to user interactions with the hardware touch
screen 110. Through use of the touch plug-in 518, the original
touch-enhanced application is enhanced to receive applica-
tion emulated mouse events and other application touch
events, and to receive API commands from the touch plug-in
518. The touch plug-in 518, when used in combination with
the system hook 528, allows the application to receive and
process more complex or sophisticated touch-based inputs
than that supported by the original touch-enhanced applica-
tion.

To illustrate the enhanced touch capabilities achieved
through use of the touch plug-in 518 and the system hook 528,
the operation of the original touch-enhanced application
without the system hook and touch plug-in is first described.
The OS is able to generate emulated mouse events and two
touch point OS touch events based on touch data but does so
in a rigid fashion that is application agnostic (i.e., that does
not vary from application to application). In this example, the
OS is configured to generate a mouse-drag event when it
detects a touch point contacting and then moving while main-
taining contact with the touch screen and is configured to
instead generate a pinch event or a spread event when it
detects two touch points concurrently contacting and then
moving closer together or farther apart from each other,
respectively. Thus, when the touch point 712 is placed on the
touch screen and then moved, the OS, through use of the OS
module 120, generates an OS emulated mouse-drag event and
sends it to the touch-enhanced application. The touch-en-
hanced application may receive the OS mouse-drag event and
may pan the map 708 in response to the event.

However, when the touch point 714 is subsequently placed
on the map 708 and moved closer to touch point 712 (e.g., the
second finger of the user’s first hand is placed on the screen
and then moved closer to the first finger, thereby pinching the
fingers), the OS emulated mouse-drag event is replaced with
an OS pinch event that is sent to the original touch-enhanced
application. The original touch-enhanced application may
receive the OS pinch event and may perform a zoom-out
operation on the map 708 in response to the event.

Notably, due to the limited touch processing capabilities of
the OS in this example, the OS completely ignores the sub-
sequently placed third touch point 716. The user placed the
touch point 716 onto the snapshot button 710 to take a digital
snapshot (e.g., generate a jpeg file of the displayed map) of the
map currently presented in the window pane 706. Unfortu-
nately, because of the limited OS touch capabilities, this touch
point 716 was completely ignored by the original touch-
enhanced application and no snapshot was taken.

By using a system hook 528 and a touch plug-in 518, the
touch processing capabilities of the touch-enhanced applica-
tion may be improved to provide much greater flexibility in

US 9,128,548 B2

25

how it responds to touch. In this example, the touch plug-in
518 is configured to provide filter criteria to the system hook
528 that causes all OS emulated mouse events and other OS
touch events to be suppressed (i.e., not reported to the touch-
enhanced application) and to enable application emulated
mouse events and other application touch events to be
reported. Thus, when a user places the first touch point 712 on
the touch screen and begins to move it, the system hook 528
prevents the reporting of the OS emulated mouse drag event
to the touch-enhanced application and, therefore, prevents the
touch-enhanced application from panning the map in
response to the movement of the first touch point 712. Addi-
tionally, when the user places the second touch point 714
(while the first touch point 712 remains in contact with the
touch screen), the system hook 528 prevents the reporting of
the OS pinch event to the touch-enhanced application and,
therefore, prevents the touch-enhanced application from per-
forming a zooming-out operation on the map 708.

Unlike the OS, the touch plug-in 518 is capable of process-
ing the digital touch data to generate touch events or API
commands for all three touch points. The touch plug-in 518
detects the first touch point 712 and the second touch point
714 and subsequent movement of those two touch points. In
this example and unlike the former example described above
with respect to the mouse-only application, the touch-en-
hanced application does not support API commands to trigger
map navigation operations for map 708, such as a map zoom-
in, a map Zzoom-out or a map pan. Instead, in this example, the
touch-enhanced application only allows these operations to
be triggered in response to receipt of corresponding two fin-
ger touch events from the OS. Therefore, depending on how
the touch points 712 and 714 move, the touch plug-in 518 may
issue a two-finger touch event, such as a pinch event, a spread
event, or a drag event, to the touch-enhanced application over
operating system channels through the system hook 528
(which does not filter out these other application touch
events). The original touch-enhanced application may
execute a corresponding map navigation operation in
response to the touch plug-in event received from the operat-
ing system. The original touch-enhanced application, is typi-
cally unable to identity the source that generated the two-
finger touch events (i.e., it is typically unable to distinguish
between touch events generated by the OS module 120 and
touch events generated by the touch plug-in 518). For
example, the touch plug-in 518 may generate and send a
spread event to the original touch-enhanced application to
cause the original touch-enhanced application to execute a
zoom-in operation on the map 708 in response to the user
spreading out his fingers or may generate and send a pinch
event to cause the original touch-enhanced application to
execute a zoom-out operation on the map 708 in response to
the user pinching his fingers. In this manner, the touch plug-in
518 is able to enhance the original touch-enhanced applica-
tion to allow more complex touch-based interactions with the
map 708 than what was possible through use of only the
touch-enhanced OS.

Additionally, the touch plug-in 518 detects the placement
of the third touch point 716 in a location of the graphical
snapshot button 710. Because the touch plug-in 518 is pro-
grammed to enable mouse emulation for touch points located
near or on the graphical snapshot button 710, the touch plug-
in 518 generates a mouse left-button hold event in response to
detecting placement of the third touch point 716. The touch
plug-in 518 sends the left mouse button hold event to the
touch-enhanced application through the system hook 528
(which does not filter out the event) and the touch-enhanced
application responds to the event by taking a snapshot of the

20

40

45

50

55

26

map 708. As such, the touch plug-in 518 allows a user to
dynamically zoom in or out of map 708 by pinching or
expanding two fingers of a first hand while using a finger of a
second hand to take a snapshot of the map 708 without ever
having to lift the two fingers of the first hand. The touch input
handling provided by the touch plug-in 518 is much more
flexible than that offered by the OS and is achieved by not
only generation of corresponding API commands and appli-
cation touch events (in this example, application emulated
mouse events and other touch events) but also by the system
hook 528 that filters out the OS touch events that otherwise
may conflict with the application touch events.

The described systems, methods, and techniques may be
implemented in digital electronic circuitry, computer hard-
ware, firmware, software, or in combinations of these ele-
ments. Apparatuses embodying these techniques may include
appropriate input and output devices, a computer processor,
and a tangible computer-readable storage medium on which a
computer program or other computer-readable instructions
are stored for execution by one or more processing devices
(e.g., a programmable processor).

A process implementing these techniques may be per-
formed by a programmable processor executing a program of
instructions to perform desired functions by operating on
input data and generating appropriate output. The techniques
may be implemented in one or more computer programs that
are executable on a programmable system including at least
one programmable processor coupled to receive data and
instructions from, and to transmit data and instructions to, a
data storage system, at least one input device, and at least one
output device. Each computer program may be implemented
in a high-level procedural or object-oriented programming
language, or in assembly or machine language if desired; and
in any case, the language may be a compiled or interpreted
language.

Suitable processors include, by way of example, both gen-
eral and special purpose microprocessors. Generally, a pro-
cessor will receive instructions and data from a read-only
memory and/or a random access memory. Storage devices
suitable for storing computer program instructions and data
include all forms of non-volatile memory, including by way
of'example semiconductor memory devices, such as Erasable
Programmable Read-Only Memory (EPROM), Electrically
Erasable Programmable Read-Only Memory (EEPROM),
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and
Compact Disc Read-Only Memory (CD-ROM). Any of the
foregoing may be supplemented by, or incorporated in, spe-
cially-designed application-specific integrated circuits
(ASICs).

The touch screen device described herein may be a multi-
touch display device. Multi-touch display devices encompass
a wide variety of display devices and associated systems and
components. Some multi-touch display devices require
physical contact with a surface of the multi-touch display
device in order to receive input. For example, such a multi-
touch display device may receive input by detecting contact
with a surface of the multi-touch display device by a finger, a
stylus, some other mechanical, electro-mechanical, or mag-
netic input mechanism and/or any combination of multiple
such input mechanisms at the same time. Furthermore, some
such multi-touch display devices may be configured such that
the surface that receives input may appear to be the same
surface on which the multi-touch display device displays
objects (Whether or not the surface that receives input actually
is the same surface as the surface on which the multi-touch
display device displays objects). Alternatively, other such

US 9,128,548 B2

27

multi-touch display devices may receive input on a surface
that is clearly remote and distinct from the surface on which
the multi-touch display device displays objects. One example
of such a multi-touch display system is a multi-point input
capable standalone tablet that provides input to a remote and
distinct display.

Other multi-touch display devices do not require physical
contact with the surface of the multi-touch display device in
order to receive input. For example, such multi-touch display
devices may receive input by detecting the presence of a
finger, a stylus, some other mechanical, electro-mechanical,
or magnetic input mechanism and/or any combination of
multiple such input mechanisms in the vicinity of the surface
of the multi-touch display device even when such input
mechanisms are not in physical contact with the surface of the
multi-touch display device.

Furthermore, the various different transformations and
annotations disclosed herein may be implemented by any
other type of multi-point computing system configured to
receive multiple inputs at the same, including, for example,
systems configured to receive concurrent input from multiple
pointing devices (e.g., multiple computer mice) and/or con-
current input from one or more pointing devices and another
input device (e.g., a keyboard). Moreover, some of the various
different transformations and annotations disclosed herein
are not limited to implementation on a multi-touch device and
thus may be implemented on a single-point device.

Various modifications may be made. For example, useful
results still may be achieved if steps of the disclosed tech-
niques are performed in a different order. Moreover, useful
results may be achieved by combining various steps or com-
ponents of the various disclosed techniques in a different
manner and/or if components of the disclosed systems are
combined in a different manner and/or replaced or supple-
mented by other components.

What is claimed is:

1. A computer-implemented method, comprising:

rendering, on a display screen of a touch screen device, a
graphical user interface of an application, the display
screen having a display area for rendering images and
the graphical user interface of the application being ren-
dered in a portion of the display area;

generating digital touch data in response to user interac-
tions with a touch-sensitive surface of the touch screen
device;

converting, using a module of an operating system (OS)
residing on the touch screen device, the digital touch
data into OS touch events;

converting, using a module of a touch plug-in of an appli-
cation on the touch screen device, the digital touch data
into application touch events;

receiving, at a system hook, the OS touch events and the
application touch events;

receiving, at the system hook, application location infor-
mation that identifies the portion of the display area of
the touch screen device in which the graphical user
interface of the application is being rendered;

filtering, by the system hook, the OS touch events and the
application touch events based on the application loca-
tion information; and

providing, by the system hook, the filtered OS touch events
and application touch events to the application.

2. The computer-implemented method of claim 1, wherein

generating the digital touch data comprises:

receiving touch input from a touch screen of the touch

screen device; and

28

converting the touch input into digital touch data using a

touch screen driver.

3. The computer-implemented method of claim 2, wherein
the touch input is input generated by one or more user fingers

5 contacting the touch screen of the touch screen device.

4. The computer-implemented method of claim 3, wherein
the touch input comprises one of: a one finger tap, a one finger
swipe, a one finger flick, a one finger double tap, or combi-
nations thereof.

10 5. The computer-implemented method of claim 3, wherein
the touch screen device is a multi-touch device and the touch
input comprises one of: a multiple finger tap, a multiple finger
swipe, a multiple-finger press-and-hold, a multiple-finger
flick, a multiple-finger pinch, a multiple-finger expansion, a

15 multiple-finger press-and-tap, or combinations thereof.

6. The computer-implemented method of claim 2, wherein
the touch screen driver is further configured to provide the
digital touch data to the application.

7. The computer-implemented method of claim 1, wherein

20 the graphical user interface of the application comprises a
window rendered in the portion of the display area and the
application location information identifies a location and a
size of the displayed window.

8. The computer-implemented method of claim 1, further

25 comprising:

receiving, at the system hook, real mouse events from a

device input,

wherein the device input is in communication with a

peripheral mouse,

30 wherein the peripheral mouse is communicatively coupled
to the touch screen device, and

wherein user-generated mouse input on the peripheral

mouse is converted into real mouse events by the device
input.

35 9. The computer-implemented method of claim 8, further
comprising passing, by the system hook, the real mouse
events to the application.

10. The computer-implemented method of claim 1,
wherein filtering, by the system hook, the OS touch events

40 and the application touch events is accomplished by:

accessing location information for a particular OS touch

event and location information for a particular applica-
tion touch event, the location information for the par-
ticular OS touch event indicating a location of touch

45 input on the display area of the touch screen device that
triggered the particular OS touch event, the location
information for the particular application touch event
indicating a location of touch input on the display area of
the touch screen device that triggered the particular

50 application touch event;

determining, based on the location information for the

particular OS touch event and the application location
information, to apply first application-specific filtering
criteria to the particular OS touch event;

55 determining, based on the location information for the
particular application touch event and the application
location information, to apply second application-spe-
cific filtering criteria to the particular application touch
event; and

60 applying the first application-specific filtering criteria to

the particular OS touch event and applying the second
application-specific filtering criteria to the particular
application touch event.

11. The computer-implemented method of claim 10,

5 wherein applying the first application-specific filtering crite-

ria to the particular OS touch event comprises filtering out the
particular OS touch event to cause the particular OS touch

o

US 9,128,548 B2

29

event to not be reported to the application; and wherein apply-
ing the second application-specific filtering criteria to the
particular application touch event comprises filtering out the
particular application touch event to cause the particular
application touch event to not be reported to the application.

12. The computer-implemented method of claim 10,
wherein determining to apply the first application-specific
filtering criteria comprises determining that a starting loca-
tion of the touch input that triggered the particular OS touch
event is located inside the portion of the display area in which
is rendered the graphical user interface of the application; and

wherein determining to apply the second application-spe-

cific filtering criteria comprises determining that a start-
ing location of the touch input that triggered the particu-
lar application touch event is located inside the portion
of the display area in which is rendered the graphical
user interface of the application.

13. The computer-implemented method of claim 10,
wherein determining to apply the first application-specific
filtering criteria comprises determining that an ending loca-
tion of the touch input that triggered the particular OS touch
event is located inside the portion of the display area in which
is rendered the graphical user interface of the application; and

wherein determining to apply the first application-specific

filtering criteria comprises determining that an ending
location of the touch input that triggered the particular
application touch event is located inside the portion of
the display area in which is rendered the graphical user
interface of the application.

14. The computer-implemented method of claim 10,
wherein determining to apply the first application-specific
filtering criteria comprises determining that a starting and an
ending location of the touch input that triggered the particular
OS touch event is located inside the portion of the display area
in which is rendered the graphical user interface of the appli-
cation; and

wherein determining to apply the second application-spe-

cific filtering criteria comprises determining that a start-
ing and an ending location of the touch input that trig-
gered the particular application touch event is located
inside the portion of the display area in which is rendered
the graphical user interface of the application.

15. The computer-implemented method of claim 1,
wherein the OS touch events comprise OS emulated mouse
events.

16. The computer-implemented method of claim 1,
wherein the application touch events comprise application
emulated mouse events.

17. The computer-implemented method of claim 1,
wherein the application touch events are generated by the
module of the touch plug-in to the application on the touch
screen device, and wherein the module comprises one of: a
mouse controller, or a touch controller.

18. The computer-implemented method of claim 1,
wherein the OS touch events and the application touch events
comprise a data message that include a flag or a code to
distinguish the OS touch events and the application touch
events based on their source.

19. The computer-implemented method of claim 1,
wherein the touch screen device comprises a multi-touch
capacitive touch screen device.

20. The computer-implemented method of claim 1,
wherein the application location information comprises at
least one of: coordinate information associated with a win-
dow of the application, coordinate information associated
with a window pane of the application, size information asso-

10

15

20

25

30

35

40

45

50

55

60

30

ciated with a window of the application, size information
associated with a window pane of the application, or combi-
nations thereof.

21. The computer-implemented method of claim 1,
wherein the application location information designates a
location at a pixel level.

22. The computer-implemented method of claim 1, further
comprising generating the application location information
when the application is launched on the touch screen device
and updating the application location information as the por-
tion of the display area in which is rendered the graphical user
interface of the application changes during user interaction
with the application.

23. A touch screen device comprising:

a touch screen including:

a display screen having a display area for rendering
images, and

a touch-sensitive surface positioned over the display
screen; and

a computer processor configured to:

enable rendering of a graphical user interface of an
application in a portion of the display area of the
display screen;

generate digital touch data in response to user interac-
tions with the touch-sensitive surface;

convert, using a module of an operating system (OS)
residing on the touch screen device, the digital touch
data into OS touch events;

convert, using a module of a touch plug-in of the appli-
cation on the touch screen device, the digital touch
data into application touch events;

receive, at a system hook, the OS touch events and the
application touch events;

receive, at the system hook, application location infor-
mation that identifies the portion of the display area of
the display screen in which the graphical user inter-
face of the application is being rendered;

filter, by the system hook, the OS touch events and the
application touch events based on the application
location information; and

provide, by the system hook, the filtered OS touch events
and the application touch events to the application.

24. A non-volatile computer-readable storage device stor-
ing software instructions that, when executed by a computer
processor of a touch screen device, cause the computer pro-
cessor to:

render, on a display screen of the touch screen device, a

graphical user interface of an application, the display
screen having a display area for rendering images and
the graphical user interface of the application being ren-
dered in a portion of the display area;

generate digital touch data in response to user interactions

with the touch-sensitive surface of the touch screen
device;
convert, using a module of an operating system (OS) resid-
ing on the touch screen device, the digital touch data into
OS touch events;

convert, using a module of a touch plug-in of the applica-
tion on the touch screen device, the digital touch data
into application touch events;

receive, at a system hook, the OS touch events and the

application touch events;

receive, at the system hook, application location informa-

tion that identifies the portion of the display area of the
touch screen device in which the graphical user interface
of the application is being rendered;

US 9,128,548 B2
31

filter, by the system hook, the OS touch events and the
application touch events based on the application loca-
tion information; and

provide, by the system hook, the filtered OS touch events
and the application touch events to the application. 5

#* #* #* #* #*

32

